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Abstract
Let 1 <p <=, and let HP(U) denote the family of all functions

f that are analytic in the unit disc U such that

2n
eIl = 11 <§—,[ £rel®) [Pa < = .
r+1~
0
Set

1

n
f(x)dx - J w, f(x

A

o = inf sup

' r@uP (), ||£]] =1]=1

It is shown that given any € > 0, there exists an integer n(e) > O,
such that if n > n(e) and q = p/(p - 1), then
exp{-(SJ‘w + e)n"} A exp{-(—“!-‘- - e)n!‘} ’
(29)
*
Let HP(U) denote the family of all functions £ such that
*
g € HP(U), where g(z) = £(2)/(1 - z2). and where HP(U) is normed by
* @
||f|lp - Ilgllp, ||g||p being defined as above. Let (T (f)} _, be an

approximation scheme defined by

e *
T,((2) = [ £x)e (), fe B (V) ,

£

& i=1

& . »
o where ¢ 1s analytic in U, and such that ||T_(£)]|_ < c||f]] .
. n,j n P P

where C > 1, but independent of n . Then given any ¢ > 0, there
exists an integer n(e) > 0, such that whenever n > n(e), then
cxp{-(skt + e)nk} < inf su sup |f(x) - T“(f)(()
T tcn;(U),T|f||;-1 ~l<x<l

n
exp{-(—1 - c)nk}
5 ;;E

- — — 2 - 3 SN F ‘;m-——




1. Introduction and Summary

Let 1 <p <=, and let “P(U) denote the family of all functions

f that are analytic in the unit disc U of the complex plane, such that

(1.1)

2w
g1, = 11 G- 7 lee’® Pan?/? <
r+1

Let 9 be defined by

(1.2)

g = inf sup
ev, (e @y £ =1

n

3

€C,x

3

and q by q = p/p-1.

We then prove

that whenever n > n(e), then

(1.3)

“ﬂ4ﬁﬂ+ﬂﬁ}:%iewb$f¢-em
q

0

1

-1

n
I f(x)dx - ] w f(x
3=1 3

j)

Theorem 1.1: Given any e > 0 there exists an integer n(e) > 0

%,

such

*
Next, let HP(U) denote the family of all functions f such that

g € HP(U), where g(z) = £(z)/(1 ~ zz), and normed by ||f||; - ||g||p.

where ||g||p is defined as in (1.1). Let {rn(f)}:_1 be a linear apprecximation

scheme defined by

(1.3)

where

(1-6)

where

n
T () (2) = | £(x)¢, ,(2)

b

n,J

3=1

is analytic in U for each n and j,

* *
o115 < cllell}

C 1s independent of n .

We then prove

and such that

.

"
" T~




Theorem 1.2: Given any ¢ > 0, there exists an integer n(e) > 0 such

that whenever n > n(e),

exp{-(Skw + e)nk}

< inf su sup |f(x) - T (£)(x)
(1.5) T fH*(U) ,Tlfl | *=1 -1<x<1
n P P
:_exp{-(—lg - e)nk}
2q

We remark that the condition (1.4) ensures that Tn(f) + f for
all fQ@H (V) .

:et us briefly mention some other papers which are relevant to
the present work. In 1964 Wilf [23] proved for the case p = 2 that
s 0[(log n/n)k] . In 1971 Haber [6] and Johnson and Riesz [8]
proved (for p = 2) that oi = 0(1/n) . In 1973 [17] it was

-n/2 nk

shown by the author that for the case p = 2, o = O0(e ) . Im

1975 1t was shown by Loeb and Werner [9] that for arbitrary p > 1,

142/9. oupl-(0/2)%/(2q)], where 1/p + 1/q =1 .

o <2
. -
The bounds obtained in the present paper are sharper than any
others that have been obtained previously. Moreover, while there is a
gap in our upper and lower bounds, no one has previously obtained a lower

bound. Finally, no one has previously obtained any bounds of the type

in Thm. 1.2, for H;-typel interpolation.

It 1s convenient for purposes of the discussion which follows,

to set

(1.6) as= (Iqi)" , bwsth




and to assume, throughout, that € 1s an arbitrary positive number.
The results of Thms 1.1 and 1.2 may be easily extended to

establishing the optimal 0(e™® ) rate of convergence in other H

spaces, p > 1 , and to deduce lower bounds on the rates of convergence

of other methods of approximations. In what follows, we shall describe

some of these. We shall also mention known methods of approximation

in each case, which converge at the O(e-Yn ) rate. At this time it

is not known whether or not ¢ = y for any of these methods.

(@) Let 0<dgn/2, let D, = {z=xtly: |arg[(l+z)/(1-2)] <

(Note that 0“/2 = U) and let HP(Dd) denote the family of all functions

f that are analytic in Dd such that

(1.7) ||f||p = 1lim inf (Iclf(z)|p |dz|)1/P < =,

c»avd. CCDd

The optimal rate of convergence of quadratures (1.2) in Hp(Dd) is

%
O(e-cn ) where

(1.8) agcc<b+e

The quadrature methods of Thm. 1.6 (b) of [17] and Thm. 3.2 of [18]

%
converge at the O(e-‘n ) rate. The method constructed via the proof

3nq)]u"}) rate.

in [9] converges at the O(exp{-[dk/(2
(b) Let B;(Dd) denote the family of all functions g such
that f € up(vd) , where f(z) = g(z)/(l-zz) ane where Hp(vd) is defined

in (a) above. The optimal rate of convergence of interpolation (1.3) in

%
n;(vd) 18 0(e ™ ) , where

d}

e—




(1.9)

The method [19]

f(x) & Z £(x,)$(§,h) e log( )
3=-N

< 8in[m(x-1h /h
(1.10) $(3,h) (x) T(x-b)/h

%
h= (B, x, = tanh(}h/2)

converges at the O(exp{-lz-%a-e]nk] rate, where n = 2N +1 .

(c) Let k > 0 be an integer, and let n:(vd) denote the family
of all functions f such that 8 € Hp(Dd) where Hp(Dd) is defined
as in (a) above, and where

. Lk
(1.11) 8 (2) = "— G o ) SR ; 1)
1-2z

£

Let Tn(f) be defined as in (1.3), and set

< ( sup £ -1 (6)) V)
1.12) e = Bke“ (p ) ||8 || =1 j=0, 1. ..,k x€(-1,1) n x
4

Then the optimal rate of convergence to zero of c: is O(Q.CR ) , where
¢ 1s subject to (1.9). If Tn(f) is defined by

N f(x,) k
1.13) T (6)(x) = ): —-1-— a-x?) 5(3,1) o 10g(1E) where

: (l-xj)




where n = 2N + 1, and where x

5 S(j,h) and h are defined as in (1.10),

then [10]

Qak sip £ - (1.1 P |
4=0,1,...,k x&@(-1,1) s

- O(exp{-(Z—ka-E)n%})lllkII
P

(d) Let Dd = {z = xtiy: ]y|<d} , and let Hp(vd) denote the

family of all functions f that are analytic in D& » such that

(1.15) N(f,y) = (I {|£(x+y) |P + |£(x-1y)|P} cos P Uz12yam) P < »
R

(R= (==,=)) forall y , 0<y<d, and such that ||f||p = N(f,d ) <

(1) The optimal rate of convergence of n-point quadratures

C

n
j f(x)dx = ZJ_ w, f(x,) 1in up(vd) 18 0(e °" ) , where c 1s subject
R

2°3 3
N

to (L.8). The trapezoidal rule, J f(x)dx = h Zj-—N f(jh) ,
R

e
h= (Zﬂdqlﬂ)k , converges at the O(e ® ) rate, where n = 2N+l .
(i1) The optimal rate of convergence of interpolation of
%
f€ Hp(vd) over R is 0(e ") , where ¢ 1is subject to (1.9).

Interpolation via the Whittaker Cardinal function, (see Eqs. (1.10))

N
£ & [y £UW) SGMG) L b = (raa/W*

converges at the O(pr{-(z-ka-e)nk} rate [19].

oA — g SR EBRSIE TG, Gy -7 e R



(111) The optimal rate of convergence of the approximation

I e1th(x)dx a Xn w, f(x )eix.'it for £€ H (D,) and |t| < [nn/(2qd)]%
b o R SR : p d
R

% ik
is 0(e ™ ) , where 2 % a®cSb. The method I f(x)e1Xtdx =
R

N 1jht %
h E f(jh) e , h = (ndq/N) (The Fast Fourier transform method)
j=-N
% %
converges at the O(e 2 kin ) rate [19].

(iv) The optimal rate of convergence to zero of the error

n
f(x
(1.16)  sup | p.v.] £0) g = § £(x,) ¢ L ()]
teR L 321 g

!,

SR,
where P.V. denotes the principal value and f € Hp(Dd) is Ofa ) .

where c¢ 1s subject to (1.9). The method [19]

N
(1.17)  P.V. I £3®) gy o ¥ £an) Sidysco, 1o &R )2,
y =t - Zh 2h
h = (ndq/N)*, converges at the O(exp{-(Z-%a-e)n%}) rate , where n = 2N + 1 .

(e) Let U, = {z=xtiy: |arg z| < d} and let Hp(vd) denote the

family of all functions f that are analytic in Dd such that
(1.18) M(£,p,0) = r a+e) 2P/ g(e o19)P gt < @
0

for all || < d, and such that N£l = {(M(f,p,~d") + M(E,p,d )P < w,

The optimal rate of convergence of n-point quadratures

n L
I. f(x)dx = ) ij(x ) in H (Dd) 18 0(e ™ ) where ¢ is subject to
o 1.1 j P




7a
(1.8). The method
Y .
(1.19) rf(xmxsh I e £’
0 §==N

"
converge at the O(e - ) rate [19], where h = (21|’dq/N);5 and n = 2N+1.
(f) Let Dd be defined as in (e) above and let Hp(Dd) denote

the family of all functions f that are analytic in Dd, such that

(1.20)  N(£,p,0) = r e 1P/ (144) 2P/ |£(£e1®) (P 4o < w
0

for all |8| < d, and such that ||f||p = {N(f,p,-d") + u(f,p.d')}”p < =,
n

The optimal rate of interpolation f(x) = Z f(xj)vn j(x) over (0,»)
1=1 ;

-cnk) rate, where c 'is subject to (1.9).

for £ in Hp(vd) converges at the O(e

The method

N 1h
(1.21) f(x) = ] f(e')s(J,h)e logx
J=-N

- ) —
converges at the 0(¢=:-(2 a-€)n ).rate [19], where h = (ndB/N)% and
n=2N+1.

(g) Consider the solution of the problem

(1.22) f(x) = Iw k(x-t)f(t)dt+g(x) , x > 0
0

for £ , given k and g , and where k and & » the Fourier tranzforms
of k and g , are known functions in Hp(lh) » as defined in (d) above.

Then the optimal method of approximating f in the form (1.3) for arbitrary
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k and g in Hp(vd) converges at the rate O(e-cn ) , where
1 1

0% %
ag<ccg< b . The method in [21] converges at the O(e 2 “an ) rate.

™%

(h) Consider the approximate solution of the Hilbert problem
[7). Let Dd be defined as in (a) above, let each of the m contours of

the Hilbert problem be expressed by L, = {¢j(t): 1 <t <1} where each

3

¢, 1is in Hp(vd) , and let the "data" G on each L

be expressible

] A

in the form gj(t) = G(oj(t)) , where 83 € Hp(Dd) for each j . Then

the optimal rate of convergence of an approximate solution (1.3) to the
%

exact solution of the Hilbert problem is 0(e-cn ) , where c¢ 1s subject

to (1.8). The method in [7) converges at the O(e_a'n ) rate.

(j) Consider the solution of the Dirichlet problem Af = Azf
on the exterior of a bounded simply-connected domain B , whose boundary

consists of a finite number of m contours L, on which we are given

3

boundary data G , as described in (h) above. Then the optimal rate of
convergence of an approximate solution (1.3) to the exact solution f
is O(e_cn ) , where c¢ 18 subject to (1.8). The method of solution in
[3] converges at the O(e_‘n%) rate.

(k) Let O € H;(Dd) , where H;(Dd) is described as in (b)
above, and let S be the surface of a body B obtained by rotating the
function ¢(x) about the x-axis. The optimal rate of convergence of
an approximation (1.3) to each component of the scattered electromagnetic
field due to B obtained by solving the integral equation problem in
[12] 1s O(e—cnk) , where c 1s subject to (1.9). The method used in
%

[12] converges at the O(exp{-(2" a—e)nk}) rate.

(1) Consider the solution of the linear problem




e ASASNI AR NPT R S Ve

8a
2

(1.23) 3—% + p(2) %5 + q(z)f = r(z) , £f(-1) = £(1) = 0,
z

for f , given p , q and r are analytic in Dd as defined in

(a). Assume furthermore, that we can determine a priori, the existence
of ¢ solution of (1.20), with the property that the functions

(l-zz)f"(z), (l-zz)p(z)f'(z) 2 (l-zz)q(z)f(z) and (l—zz)r(z) are in
Hp(vd) , as defined in (a) above. Then the optimalvrate of convergence
of an approximate solution (1.3) to f 1is 0(e-cn6) , where c¢ 1is
subject to (1.9). The method in [20] produces a solution of the form

(1.10) which converges at the O(exp{-(Z—% —e)n%}) rate, where n = 2N+1.

(m) We can also state optimal rates of convergence similar to those

in (1) above for solutions of differential equations over (0,») and over
(-»,») ; moreover, methods are derived in [20] which converge at the
O(exp{-(Z-ka—e)n%}) rate. The methods apply also to the case of
nonlinear equations, and to the solution of partial differential equatioms.
In the latter case, the best possible rate of convergence in s dimensions¥*

1/(28)
is O(e e ) ; this functional form of convergence is achieved in [20]
for the case of the approximate solution of partial differential equation

problems in two dimensions. Similarly, the best possible functional form

*Consider the approiimation of u(x,y) on the square S = [-1,1]x[-1,1] by
2 n T
by n” basis functions of the form {¢n,j(x) wn’”’(y)}j”"_1 . Let u cousidered

as an function of x (rsp. y) satisfy the conditions of Thm 1.2 for each
fixed y (rsp. x) on [-1,1]. Then by Thm. 1.2 there exists a u(+,y) such

that ve HP(U), where v(x,y) = (1-x2)-1 u(x,y) , and such that

n n
inf sup | u(x,y) - 2w { I vulx,y)v ,(y)}o ¢ (x) |
wj )vzixkoyz (x,y)’es J-]_ j =1 £ j £° 'm, 8 n'j

et |
38 IIu(°.Y)||p

where ¢ 18 subject to (1.9), in which a 15 defined by (1.6), with
d=n/2 3 On the other hand, a Cartesian product formula of the type (1.10)

using n® basis functions may be used to approximate u on S ¢n wirhip
- )
an exp{-(2 kn-e)n‘} error. Trat is using n basis functions, v: ahiicvc
i ' nid
a rate of convergence of e . n:-stnllarly. it 1s possible to achieve an

optimal convergence rate e-c|a| /(23) using n basic functions in 8 dimensions.




for the rate of convergence is achieved in [14] for the case of the
approximate solution of integral equations, in the space of functions
considered in [14].

In light of the proof of the upper bound in Thm. 1.2 (see
also [4,5]), the present paper shows that when approximating functions that

are in HP(U) over (-1,1) we can do no better with regards to achieving
1

cn

the best e rate, than one can do using rational functions as

bases, or for that matter, the functions used in (1.10).

The present paper is also related, in the sense of optimal
quadratures, with the work of Sobolev [16] and other Russian mathematicians
(see e.g. [24]) who have verified optimality of certain quadrature rules
with respect to Sobolev norms. Such norms involve the integral of a
power of one or more derivatives, and consequently, using an n-point
method, the optimal rate of convergence is O(n-c) . Sobolev was
primarily interested in obtaining optimal methods of solving elliptic

partial differential equations via integral equation methods, In this

- regard, we believe that the rules of e.g. [19] have some advantage over

Sobolev-type methods, since in applica:tiona, the solution u of an
elliptic PDE is analytic, a.e., and while it is usually not possible tu
determine the exact nature of the singularities of u, it is possible
to determine a priori the pointe, or curves or surfaces on which the
singularities of u occur. That is, it is then possible to solve for

_..V(28)

u viaan e o method in s dimensions.

|
1
{
!
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2. The Upper Bound in Theorem 1.1

We find from [19, Eq. (7.4)], that if f € Hp(U), then for

any h > 0,
1 © jh jh
2e e’ -1
(2.1) f f(x)dx - h ) £( )
4 J=—=(1 + ejh)2 o L
-ﬂzl(Zh) 2n 10
<= 5 lim_ I |£(re™) |de
2 ginh (-;-‘-‘-) il
-nzlh
< ol el S—p
; g /b

Lemma 2.1: Let 1 <p <o, and let f ¢ HP(U) . Then there exists a

constant Cp such that for all x € (-1,1),
(2.2) [£)| < cp||f||p(1 - x3)~Liv

Proof: The Poisson formula yields

2, (2w i6
Bix) w lim_(l ;"x ) I f(re de
r+l 0 1l -2%cos 0 +x

for any x € (-1,1), and therefore
(2.4) [f@) < Q - x2)||f||p G, (x)

wvhere by Eq. 15.3.3 of [1]

(2.5) ¢dx) = 21 + 0 %, ¢ 1; —E—)
q (1 + x)
1-2q 4x |
- 2(1 - x) Fl¢, 1 - q; 13 —5 )
1+ x) f




11

1-2q I'(q - %)

v 2 - X" T 5T ()

as x-+1.
The inequality (2.2) now follows from (2.4) and (2.5).

Now, by (2.1) and (2.2), we have

1 N jh

ZeJh

f(x)dx ~ h £(E— 1)
h j=-N (1 + eJh)2 eJh +1
2 ® jh h 2 -1/p
(2.6) siE et Bodey 1M L - @y el
b P a1 (1 4+ &I™? peL N} P

2
h 1 -Nh
< (Ci Pt C, e /q}||f||p

< ¢ o1/ (20) 0"

—

where n = 2N + 1, and where we replaced h by nqklﬂk.
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3. The Lower Bound in Theorem 1.1

The function

t
(3.1) £ = E32),  c2o0,
is in HP(U), and it has norm
3.2 el < eyl =1 .

We also have

l1+¢t
(3.3) {-1
#
u n * n * -ajt
w.f (z,) = w,.e
L vy, (2 j_Zd 3

i=1
|

where the second of these is a quadrature formula for approximating

1
I f(z)dz for any f € HP(U), and where
-1

*
1+2z
(3.4) ua;--hlo.(-TJ-)>0.

* %
since it is readily seen that if Izjl = 1 for some j, then X?_\ w f(z,)
- -

! will be infinite for some functions f € HP(U) -

Hence we now have, in view of (1.2), that

(3.5)




o

13

By taking the Laplace transform of each side of (3.5) we find

that
n w,s
(3.6) > sup |¢(s) - i - ol
‘h 850 jzl s + aj
where
(3.7 @ = [ 2,
3 ¢(s 1+¢t 3
0
Lemma 3.1: Let ¢ be given by (3.7). Then
(3.8) #(s) = 28e® log < + g(s)

vwhere g 1s an entire function. Moreover ¢ 1is uniformly bounded on
(0,=] .
Proof: The representation and everywhere analyticity of g follows by

inspection of the identity

(3.9) ¢(s) = Zseslog-% + Zseslog(s + a)

a -u 8 =-u-a
+I—L—-—12'° R du+23r s
s +u

s8+u+a
0 0

which 1s valid for all a > 0 . The boundedness of ¢ on R 1is a

consequence of

-u
#(s) = r f’: —du < 2 re-udu -2,
0 0

We now note that
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2
n w8
(3.10) Y, 2 8up ¢(92) - -—2-1——-
s&R j=1l s +aj
2 n w 32 ¢ !
l"“!%!")"zzjz e
o s s +a j=1 (8" + a,)(s” + a)

3

where a > 0, and where

-% %
(3.11) c, = ([ —de ) - &
R (8" +a)
Settiag
P.V. f(t
(3.12) @n) (o = - BV I e 4,
R

for any f € LZ(R), where P.V. denotes the principal value, it follows

that
(3.13) |1ng] |, = |1£]], -
Let us define ¢ by
2
(3.14) o(0) = ui¥E1y (x)

8 +a
and let us note that if a and b are positive numbers, then

a2 }x) = X P !,‘b"
(82 + a)(s% + b) af + b (x2 + a)(x? + b)

(3.15) H{

8
!.
g

where this identity may be established via the use of Fourier transforms. !

Let us define polynomials p and q of degree < n by

]
% : e e .
— - - -’ SRS i—w
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2 % %
2 n a‘a

(3.16) ESEEL 1 _______21
q(x") 3j=1 a* + aj x° + a:l

It then follows from (3.10), (3.13), (3.14), (3.15) and (3.16), that

2.2 )%
(3.17) vowo b ~ ek BED .
n a 2 3 2
R x a q(x")

Lemma 3.2: Let Ep denote the ellipse in the complex plane, having foci
at %1 and having sum of semi-axes equal to p > 1 . In (3.14) and (3.16),

let a =2 ginh (1) = e - e-l . Then on ([-1,1]

2 x2
(3.18) o(x) = -—————i-sgn x + p(x)
a+x

where Y(-x) = -y(x), and where ¢ 1is the restriction to [-1,1] of a
function which is analytic and bounded in Ee :

Proof: Let us set w(s) = 0(32)/(32 + a) . The functions w and ¢ are
conjugate harmonic functions and therefore ¢ 1is analytic wherever w 1is
analytic. The singular behavior of ¢ at x = 0 is determined by

congidering the first of the two integrals

2
cam M i L
22 [s]>2

The second integral on the right is clearly analytic at x = 0; on the

other hand
2n
(3.20) I !L_l%lélél!ll ds = -x -gn x + |n(x)

-2

where &, is analytic at x = 0 . The representation (3.18) thus follows.
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The analyticity and boundedness of ¢ in Ee is a consequence of the
2
analyticity of ot /(a + 32) in E(Ze); the relation ¢(-x) = -¢(x)

follows from (3.14), since w(-8) = w(s) .

Let m = [n]:’/4 and let N and V-1 be polynomials such
that
f 2 2
€ " inf sup IZQx - u(x2)| =  sup Iex - um(xz)l
MIII xé[-l.ll X ['1’1]
(3.21) 1
fy = inf sup ,*éél - v(xz) = gup QLEL -v 1(xz)
we__, x€[-1,1] x [-1,1] =
\ e

where Pm denotes the family of all polynomials of degree < m . Then [22]

(3.22) le,] + eyl < (crcpe™

where Ca is as in (3.11), and where C 1s independent of m .

Now, from (3.17), (3.18) and (3.21),

2,12
(3.23) Tt >C o(x) - x_px) dx

’ x2 + a q(xz)

{ (1 xzun(x )
———8gn x + x Vo 1(x ) - 3

a+x X +a

2 2 2 2
x u-(x ) + x(a + x )v-_l(x ) -

___,__.ES__l

q(xz)

2
X

q(x)

the last inequality being a consequence of a + xz.g a+l on [O0,1]) .

2

dx

%
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Upon setting

P(xz) = p(xz) - (a + xz)vm_l(xz)q(xz)
(3.24)
Q) = u_(xD)q(x?)

we have P,Qe P » and so (3.2_3) yields

2C 1
T > a xl'
n—1+a

%
Pix?) - ,g<x2)|2dx] o™

0 x q(xz)
(3.25) X
Pt x20 isedy - s0adidx -
e i xum(x) 3 - Ce
0 xQ(x")
Next, (3.21) yields um(xz) >1 on ({0,1] ; therefore
1
2 2
2C 1 Po(x") - x Q. (x),2 s
13'1") a3 +aa I x4 N 2 I dx{ -ce™.

x QN(xz) '

In (3.26) and in what follows

N=n<+n
P .. 2 2,2
Y " mffx“”‘ X 90 )| gy
Po@“o x Q(x%)
(3.27) 1 Q%) >0
2 2\ 2
& 1 4 P“(x ) - xQN(x )|
x 2 ldx.
0 x QN(x )
\

Lemma 3.3: Qu(x®) >0 on (0,1] .

Proof: We may assume without loss of generality that P" -x QN and

x Q’ have no common zeros on [0,1]. However, in this case we cannot

et A e s

o ————
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have QN(EZ) = 0 for some E € (0,1]), since " would then be infinite.
In view of (3.27), we must have QN >0 on (0,1) .
Lemma 3.4: Let S be the small subset of [0,1] on which PN(xz) <0 .

Then, with I = [0,1]

p(x)

2
> inf I x*|BREL g + I x* ax
ﬁmﬂ I-S S

(3.28)

N

Proof: From (3.27), we have, since PN(xz) >0 on I-S, and

Pu(xz) <0 on S, that

2 2
P (x°) - x Q,(x%)
(3.29) N 3 . I >1 on S
x Qu(x%) l
and
2 2 2 2
P (x%) - x Q,(x") P (x") - x Q,(x")
(3.30) L — li i N2|on g,
x Qy(x7) Pe(x") + x Qu(x )|
and therefore
4 PN(xz) - x QN(xz) 2 4
(3.31) Y 2 x . et 7| dx + [x'dx
1-s P,(x ) +x Q“(x ) 4
from which (3.28) follows,
Lemma 3.5: Let q€ '2u+1 be defined by
2 2
(3.32) f < dx & fnf f 11618
q(-x) peP p(-x)
1-8 2N+1 I-S

Then all zeros of q are on [0,1] . ;

Proof: Clearly I - S must have positive measure, for otherwise (3.31)
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would iaply that \ 1/5, contradicting (2.6) . Let £ be a zero of

q which is not on [0,1]) . Then set

(1) a0 = 213 9 1f £ € [-1,0)

(11) q, (x) = 1—:—_"-2— q(x) 1f € < -1

(111) q;(x) = -l—x:_—t-g q(x) 1f €>1

(iv) ql(x) = ;—’_‘—;—'ST q(x) 1if E=u+iv, védoo.

In all® of the these cases

ql(x)

™| ©

a.e. on [0,1] .

q(-x)

This however contradicts the definition of q, since I - S has positive
measure.

Lemma 3.6: Let Yy be defined as in (3.27). Then
1
4lp(x
2 g [aEs

PPon+1 0
2:5-"(11 ﬂ)"lxp[-h!"(l‘ﬂ)"]

2
dx >

(3.33) g

Proof: By Lemma 3.5, all of the 2N + 1 zeros of q defined in (3.32)

ate on [0,1] and therefore

.t! in (iv) we have |u| > 1, then ql(x)lql(-t) can be further reduced
in magnitude a.e. on ([0,1] via the use of (11) or (111).
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2N+1 |x - Ei

x + £

<1 a.e.on [0,1] .

900 _
(3.34) |q(_x)

=1
i=1 i

Lemma (3.4) now yields

,
4lq(x) |2 4
Y 2 ] X a(-x) dx + Ix dx
I-s S
rl dlats 2
> ] x Q-0 dx
0

from which the first inequality on the right-hand side of (3.33) follows.
The second inequality on the right-hand side of (3.33) is due to Rahman and

Schmeisser [13]; this was established via a procedure resembling that of
Newman [11].

Let us now complete the proof ot the lower bound in (2.5)

By (3.5), (3.10), (3.26), (3.27), (3.33) end m = [n>%] we have

(3.36) A X Ve ) 2ca

” - l1+a

[2n5 % + /% + 1'% .

3/4
. exp[-Skw(n + n3/4 + k)%]- Cle-n

Hence given any ¢ > 0 there exists an n(e) > 0, such that

(3.37) o, > expl-(s*r + e)n¥)

for all n > n(e) .

This completes the proof.
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4.' The Upper Bound in Theorem 1.2

The function N (see [2])

p,(z) =
» 3
(4.1)

defined by
N az - x2
S e SR
=] |1 - azx2
h|
2§ ~ 1

aj-/l?sn[-—z-h——l(;k] g

has the following properties*:

(4.2) loy | < (kzu)" enh g e <x<Kk
A = exp(-K'/K)
(46.3) log(2| <1 1f z €U; [pp(z)] = 1 4f |z| = 1.

For x € (-1,1), we consider the exp

ression

pN(x) (1 - x%lf(rz)dz

i
eN(x) = lim_ i {
z|=1

r+1
(4.4)
= f(x) - rN(x)
where r, 1is a rational function of

N
Furthermore, in view of (4.2) and (4.

zi"" £ |:(1 - xz)Gq
(4.5) Ieu(x)| <

oN(z) (z - x)(1 - xz)

degree < 2N +1 .

3), we have

(x) ({if -k"f_xik"

where
*In [15 p. 326) one finde the relationships
a . nten®ints,

%
(k, )" =n
= LA T TLL I TE LI

, ylelding (4.2).

Hellha - e e 16 x €L, [x| 20

0<k<l1

21
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g 1/p
*
(4.6) €]l = 14m_ %ﬂ— JL"-Z%—%-"—‘-L
P 1 - £%2°|P
z|=1
1/q
2 2,9 ] 4
4.7) G _(x) = 1im_ %; [1 =~ %27 ldz% {z= o .
r+1 |1 - 2xcos & + x Iq
zl-l
and where 1/p + 1/q =1 . We thus find that
1 1/q
f2+ 4 | 7
600 = —2— |2 (FG , 3+35 2415 D)
1 1+x nP(%-&-l)J
(4.8)
o e
1+ x2
By formula 15.3.3. of [1] we may rewrite (4.8) as
q, L
5 Aairts * 2 1/q
G (x) = 2(1 - x2)1/q bes o x2) 1iq —73———2———4F(k, 1,'% * 1 3 12)
q ﬂéfK%'+ 1)
1 1/q
2rd + 5
2(1 - x2)1/q-1 _!;__._.2—_2_. if q>1
(4.9) m°(q - 1)I'(q/2)
i*
<liog 22y 4 g
l-x

Substituting (4.9) into (4.5), we get for q > 1 :

ard + ]”“ 1/q
ey @1 < 4|4 2*3 a-a a2
ni(q - 1)r(q/2)] P

if -kk <x < kk
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1/q
q 1
21‘(2 + —z)

(4.10) 4| a - x? 1/“Ilfll::

m(q - 1)T'(q/2)

: %
1f "x € (-1,1) , |x]| >k

while if q =1

leg@| <fa- x2)1og[—2[2—2—]x"/2| ]2

1l -x

1 1
if -kéixikf‘ and

(4.11) /5
*
‘z,,(:)}_ 1-x )103[ 2 zz]Hf”.,,
1-x
if x€ (-1,1) and |x| _>_k1i 5
Upon noting that [17, Eq. (2.23)]
2
(4.12) l1-k<8 exP[i-;;_I_/-A_]
we find that

*
el exp [ %10 d] L o< lal <,
(4.13) |eg| g e
L
CHfH exp| /3 , k*< x| <1.
log-x-

if q > 1, and where Cq depends only on q, and

1 #
1€l :
—'—2 10g(2v2) exp [— L) 103-14] 1f 0 < |x| < k¥ )

2
ley®| <1
» 8n 12 %
(4.14) |—geme [-——g| 1f & <x| <1
i lo.-x- l.o;-i-
|
if q= 1.
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By taking 1log(l/A) = an/Nk, we find, in all cases, that

Y

(4.15) ley@| _<_cl||f||*(nlz)"exp e S :
L (29)*

which, upon replacing N by (n - 1)/2, yields the upper bound in
Theorem 1.2 .

We remark that the same upper bound is obtainable using approx-
imations derived in Theorem 7.1 of [10]. Since the approximation technique
of [10] does not involve rational approximations, this suggests strongly
that the constants in the upper bounds in Theorems 1.1 and 1.2 cannot be

improved.

i
T ——————— TR oo g BB N g et i
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5. The Lower Bound in Theorem 1.2

Since g € HP(U). where g(z) = £(z)/(1 - zz), Theorem 1.1

implies that

(5.1) expl‘(Skn + s)nk]

< prsr suT ¥
vnp(u).l f]lp-l

L4

1
I [“’"2 - Tn(f)(x)de
1 l=-x 1 =x

By Lemma 2.1,

(5.2) l—f-(—"Lz P e AR S
Hex ) F
while by (1.4) and Lemma 2.1,
T (f)(x) *
(5.3) B ccca-iD i
l1-x
Thus (5.1) implies that
(5.4) exp[-(S*w + e)knkl

1-6
L6 . [ ——95—7 > 2 Cp(l + C) Q- xz)-llpdx
4 el |x]>1-6

where, subject to (1.4),

(5.5) € = inf 8su sup |f(x) -7 (f)(x)l
e, !.’l.il;(v).TIfH;-l ~1<x<1 s

that is, by taking 6 = Ze-n, we have




SROR——

% %
(5.6) exp[-(5"% + €)n”] < €a,0" + 2q Cp(l + C)e

which yields the lower bound in Theorem 1.2 .

-n/q

26




T A 15

27

References

(1]

[2)

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15)

Abramowitz, A. and I.B. Stegun, Handbook of Mathematical Functions,
N.B.S. Applied Math. Series 53, Washington, D.C.

Cauer, W., W&Mmﬁn&. Math. Mech. 20 (1946)
358.

Chiu, Y.H., An Integral Equation Method of Solution of Au + k‘u=0
in the Exterior of a Bounded Domain, Ph.D. Thesis, University of
Utah (1976).

Gonxar, A.A., Estimates of the Growth of Rational Functions and Some
of Their Applications, Math. U.S.S.R. - Sbornik 1 (1967) 445-456.

» On _the Rapidity of Rational Approximation of Continuous
ons with cteristic S larities, Math. U.S.S.R.

Sbornik 2 (1967) 561-568.

Haber, S., The Error in the Numerical Integration of Analytic Functionms,
Quert. Appl. Math. 29 (1971) 411-420.

Ikebe, Y., T.Y. Li and F. Stenger, The Numerical Solution of the
Hilbert Problem, in "Theory of Approximation with Applications"
edited by A.G. Law and B.N. Sahney, Academic Press (1976).

Johnson, L.W. and R.D. Riess, Minimal Quadratures for Functions of
Low Order Continuity, Math. Comp. 25 (1971) 831-835.

Loeb, H.L. and H. Werner, Optimal Numerical Quadratures in Hp Spaces,
Math. Z. 138 (1974) 111-117.

Lundin, L. and F. Stenger, Cardinal-Type Approximation of a Fumction
and its Deriwvafires , submitlted,

Newman, D.J., Rational Approximation to (x|, Michigan Math. J.
11 (1964) 11-14.

Petrick, W., J. Schwing and F. Stenger, Algorithm for the Electro-
magnetic Scattering from Rotationally Symmetric Bodies, submitted.

1l

2

Rahman, Q.I., and G. Schmeisser, Minimization of I x‘lp(x)lp(-x)l dx ,
private communication. 0

Schwing, J., Integsal Equation Method of Solution of Potential Theory
Problems in RZ, Ph.D. Thesis, University of Utah (1976¢).

Shisha, 0., Inequalities, Acad. Press New York (1967).




(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24)

28

Sobolev, S.L., Convergence of Approximate Integration Formulas for

Functions from Lg‘), Soviet Math. Dokl. 6 (1965) 865-867.

Stenger, F., Integration Formulas Based on the Trapezoidal Formula,

J. Inst. Maths. Applies, 12 (1973), 103-114.

, An Analytic Function which is an Approximate Characteristic

Function, SIAM J. Numer. Anal. 12 (1975) 239-254.

, Approximations via Whittaker's Cardinal Function, J. Approx.

Theory 17 (1976) 22-240.

» A "Sinc-Galerkin" Method of Solution of Boundary Value

Problems, submitted.

» The Approximate Solution of Convolution-Type Integral

Equations, SIAM J. Math. Anal. 4 (1973) 103-114.

Timan, A.F., Theory of Approximation of Functions of a Real Variable,

Fizmatgiz, Moscow (1970), English transl. Int.

Appl. Math. 34 McMillan, New York (1963).

Ser. Monog. Pure

Wilf, H., Exactness Conditions in Numerical Quadrature, Num. Math

6 (1964) 315-319.

Zensykbaev, A.A., On the Best Quadrature Formula on the Class HlL .

Soviet Math. Dokl. 17 (1976) 377-380.

S —




